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Abstract 

 

In this paper, previous studies in powered exoskeleton and their contributions in the field of robotics 

technology are presented, together with their corresponding control system. Specific problems and 

issues that were encountered and the solutions made to resolve the problems will be discussed. Gait 

cycle analysis and human body dynamic model will also be covered in the study to understand the 

biomechanics and the dynamics behind human walking. 
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1. Introduction 

In the late 1960s, two countries, US and Yugoslavia, started the human exoskeleton research. US focused 

primarily on making exoskeletons for strength amplification, while Yugoslavia on rehabilitation 
[1, 2]

. By definition, 

exoskeletons are wearable devices placed around the human body. There are other studies that focus only on some 

parts of the body just like the arms and the legs or the lower extremities. Lower extremity exoskeletons can be used for 

different purposes: performance amplification, locomotion or ambulatory, and rehabilitation 
[3]

. Performance 

amplification is used to increase the user’s strength and endurance. This type of exoskeleton is widely used in military. 

While in the other hand, exoskeletons designed for ambulatory and rehabilitation are used to assist patients who have 

walking disabilities.  

2. Survey of Exoskeleton Research Works 

2.1. Yugoslavian exoskeleton 

Research activities on powered-exoskeleton began on the work of M. Vukobratovic 
[4]

 of Mihailo Pupin 

Institute, Yugoslavia, see Fig 1a. Their research objective is to develop an exoskeletal device that can aid people in 

walking.  Pneumatic actuators were used on their first version utilizing four degrees of freedom in the hip joint, knee 

joint and both legs. The robotic leg was externally powered by a predetermined periodic motion in order to 

compromise the heavy weight and large size of the air supply for the actuators. Another problem of the device was the 

issue on maintaining proper balance. A disable patient could not walk alone using the device without the assist of 

another person. In 1971, the work was extended to allow incorporation of overall stability control by adding a torso 

frame. With the use of controllers, the limbs make it easy to move along the designed path and with the zero moment 

point (ZMP), the overall dynamic stability became more stable 
[5]

.  
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To provide patient feedback, pressure sensors were equipped at the exoskeleton soles to improve stability and 

wearer’s safety. Foot sensors were developed to analyze pressure on the foot during gait cycle analysis. The problem 

associated using this sensor, especially rubber transducers, is that they will wear out over time 
[6]

. 

2.2. GE Hardiman 

Almost in the same year when Yugoslavia started the development of exoskeletons, General Electric Research, 

in collaboration with Cornell University and the US Office of Naval Research Institute, developed a full-body powered 

exoskeleton prototype that they named as Hardiman, see Fig 1b. This hydraulically-powered robot, having 30-DOFs, 

was impractical due to its 680 kg. weight. Its objective is to amplify 25 times the strength of its wearer. Unfortunately, 

the project turned out not to be successful because it was too large and bulky. Though they failed to implement the 

prototype; it was able to address solutions in technological issues like power supply and human-machine interface 
[7-10]

. 

 

Fig.1 (a) Exoskeleton Walking Aid[4]; (b) GE's Hardiman[7] 

2.3. Pitman 

Jeffrey Moore, an engineer of Los Alamos National Laboratory, proposed his project Pitman 
[11]

. The project is 

designed and intended for US soldiers. In his paper, a network of brain-scanning sensors were incorporated in the 

helmet. Problem with his research is that he never tried to address some issues on building the exoskeleton such as 

power supply.After the Hardiman and Pitman project, M. Rosheim expanded the idea of these two in one in his paper 

by incorporating singularity-free pitch–yaw type joints. He presented a full-body exoskeleton concept consisting of 26-

DOF joints
[12]

. 

2.4. BLEEX 

The US Defense Department funded an exoskeleton project that will be used by soldiers, firefighters and relief 

workers to carry major loads like food supply, rescue equipment, first-aids and weaponry having minimal effort over 

long distances and extended time periods. The name of the project was BLEEX, short for Berkeley Lower Extremity 

Exoskeleton, see Fig 2. The idea came from Prof. Kazerooni of the University of California Berkeley’s Human 

Engineering and Robotics Laboratory 
[13]

. 

The primary objective of BLEEX is to design an autonomous exoskeleton for human strength augmentation 

and enhancement
[14]

. It also addressed and solved problems in ergonomics, maneuverability, robustness, weight factor 

and durability of early lower-limb exoskeletons 
[15]

. There are two BLEEX versions. The first one is composed of two 

powered-anthropomorphic legs, a power unit and a backpack-like frame. In order to address problems in power supply, 

BLEEX uses a state-of-the-art small hybrid power source capable of delivering a large hydraulic locomotion power. 
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Aside from power supply performance, BLEEX also addressed issues in robustness and reliability by designing a 

system capable under extreme operating conditions and environment. After a series of experimentation, the researchers 

were able to conclude and identify problems in mobility requirements like payload specifications, terrain and speed 

parameters 
[16, 17]

. 

BLEEX leg has three degrees-of-freedom (dof) at the hip, one dof at the knee, and three dof at the ankle. Force 

sensors were also attached under the soles of both feet. It uses a hybrid control to add robustness whenever there is a 

change in the backpack payload. Position control and sensitivity amplification control is employed to the swing leg for 

smooth transitions as the wearer walks. Moreover, position controls were also employed to require the pilot to wear 

seven inclinometers to measure human limb and torso angles 
[18]

. 

 

Fig.2 BLEEX[13] (image credit to Prof H. Kazerooni) 

2.5. Sarcos exoskeleton 

Another US Defense funded-exoskeleton project is the Sarcos Exoskeleton project. This was started and 

developed first by the Sarcos Research Corporation in Salt, Lake City, University of Utah before the project was 

transfer to Raytheon in 2007. They started to develop exoskeletons for the US Army in 2008. Sarcos was designed not 

only to increases the strength of the wearer but also its endurance because of the engine that is used to run servo motors 
[19, 20]

. In 2008, Sarcos had become popular and well-known in developing efficient hydraulically-actuated exoskeleton 
[21, 22]

. 

2.6. Hybrid-assistive leg (HAL) 

A group of researchers in the University of Tsukuba, in cooperation with the Cyberdyne Systems Company, 

developed an exoskeleton concept to address both performance augmentation and rehabilitative purposes. They dubbed 

the exoskeleton Hybrid-Assistive Leg (HAL) 
[23]

, which is a full-body battery-powered suit designed to support the 

elderly and gait-disordered people. HAL is mainly used by disabled patients in hospitals to assist them in moving from 

one bed to another, and can also be modified so that patients can use it for rehabilitation, see Fig 3a. 

Currently, there are two HAL protoypes, HAL-3 and HAL-5. The first prototype has bulkier servo-motors and 

only has the lower limb function. It is consist of a system with four actuated joints at the hip and knee of both legs, 
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with passive joints at the ankles. Compared from the early development, the latest prototype HAL-5 is composed of a 

full-body exoskeleton for arms, legs, and torso. The exoskeleton is currently capable of allowing the u to lift and carry 

about five times as much weight as he could lift and carry unaided. The leg structure of HAL-5 powers the flexion and 

extension joints at the hip and knee using a DC motor. The main challenge is to detect the user’s motion intention. To 

accomplish this, nerve signals that flow along muscle fibers should be measured which are generally sensed with 

electromyograms. Then, a control unit determines the required assistive power and commands the actuators to produce 

a specific torque 
[24]

. HAL performance was further improved when the exoskeleton is modelled through an inverted 

pendulum with gravity, inertia and viscous friction. A compensation term is added to the supporting torque to regulate 

the joint impedance 
[25-27]

. In a separate research by Lee 
[28]

, another consideration was made for the operator's leg to act 

as a pendulum model. From this model, it can easily identify the physical parameters around human's knee joints and 

leg movement. Using myoelectricity, the effectiveness of adjusting the natural frequency in power assist control can be 

tested. 

2.7. Nurse-assisting robot 

The Nurse-assisting exoskeleton 
[29]

, a full-bodied exoskeleton project in Kanagawa Institute of Technology, 

helps in assisting nursing personnel when handling patients especially during patient transfer, see Fig 3b. The robotic 

suit covers shoulders, arms, torso, waist the lower limbs, weighing a total of 30 kg. The lower limb components include 

direct-drive pneumatic rotary actuators for the flexion and extension of the hips and knees. Air pressure is supplied 

from small air pumps mounted directly to each actuator, allowing the suit to be fully portable 
[30, 31]

. 

2.8. LOPES 

Lower-extremity powered exoskeleton or LOPES 
[32]

 is an assistive-type of exoskeleton published by 

Ekkelenkamp et al. in 2005. Its main objective is to implement a gait rehabilitation robot on treadmills for stroke 

patients. LOPES can perform in two different modes: ‘patient-in-charge’ and ‘robot-in-charge’ mode. The first mode 

works when the patient tries to walk freely without the robot’s action while the second mode is just the opposite of the 

first mode wherein the robot is the one controlling the patient especially if the user is not capable to perform 
[33-36]

. 

 

Fig.3(a) HAL-525; (b) Nurse-Assisting Exoskeleton[29]; (c) RoboKnee[39] (Creative Commons Attribution) 

2.9. NTU exoskeleton 

Another wearable lower extremity exoskeleton that was developed in Singapore is the NTU Exoskeleton, see 

Fig 5a. Its objective is to enhance the human ability in carrying heavy loads with their goal to design and control a 
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power assist system that integrates a human's intellect as the control system for feedback and sensory purposes.  The 

exoskeleton system is composed of two systems: the inner and outer exoskeleton. The inner exoskeleton is responsible 

for measuring the movements of the wearer and for providing a feedback of these measurements to the outer 

exoskeleton. On the other hand, the outer exoskeleton is designed to support the whole robotic system especially when 

the wearer starts to walk. 

For the controls, the trajectory of the wearer's foot will be followed with its own footplate during the swing 

phase of each leg. With this condition, this allows the wearer to provide the necessary information like the desired 

velocity and gait length. The NTU Exoskeleton follows the concept of ZMP in maintaining its balance during motion. 

The controller moves the actuators in such a way that the ZMP remains within the support region, which is the 

footprint. The ground reaction forces are also measured using force pressure sensors attached in the exoskeleton feet 
[37, 

38]
. 

2.10. RoboKnee 

RoboKnee 
[39]

 is a simple exoskeleton,having one dof, developed by Collins of the University of Michigan, see 

Fig 3c. The robot is designed to assist its wearer in climbing stairs and performing deep knee bends. The device is 

consists of a linear series elastic actuator (SEA) connected to the upper and lower portions of a knee brace, see Fig 4. 

Its design is very straightforward since it only uses one dof. An elastic actuator is connected between the upper and 

lower portions of the knee brace. In order to achieve low impedance and high force with fidelity, SEA was used. 

 

Fig.4RoboKnee SEA design[39] 

2.12. ReWalk 

ReWalk 
[40]

 was the first commercially available walking exoskeleton robot by Argo Medical Technologies. It 

consists of a light wearable brace support suit that integrates actuators, motion sensors, and a computer-based system 

powered by rechargeable batteries. In terms of control, the user is actively involved of the person's mobility functions.  

2.13. MoonWalker 

Another lower limb exoskeleton that was developed in 2009 was the MoonWalker 
[41]

. The main objective of 

the exoskeleton is for patient's rehabilitation, see Fig 5b. Helping people having weak legs and those suffering from a 

broken leg to walk. The device can also assist people carrying heavy loads. In order to sustain bodyweight, the 

exoskeleton uses a passive force balancer. It also uses an actuator to shift the force that is needed for the legs to do an 

action. The motor is also capable of providing energy in climbing stairs and walking in slopes. 
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Fig.5(a) NTU Exoskeleton[37]; (b) MoonWalker[41] 

 

3. Biomechanics of Human Walking 

Walking and running are the biological basis of all locomotion 
[42]

. These two are the easiest form of 

locomotion that a human body can perform. In designing an exoskeleton for lower limb, understanding the 

biomechanical model of human walking is very important. It purely involved mathematics in examining the forces 

produced by each foot contacting the ground or the ground reaction forces (GRF). 

3.1. Ground reaction force (GRF) 

In order to measure GRF, a force plate is used. This plate follows the principle of Newton's 3rdlaw of motion. 

It means that for every one step on the ground, a force vector is produced that is generally downward and backward 
[43, 

44]
. 

3.2. Metabolic cost 

In order to determine the effective performance of a powered exoskeleton, getting the metabolic cost of 

walking is one way to measure it. Metabolic cost is a measure of the increased energy metabolism that is required to 

achieve a function. Measuring the oxygen consumption rates and carbon dioxide production are ways to determine 

metabolic cost. This parameter is a good determinant and very useful in comparing the task performance of using and 

not using an exoskeleton in terms of energetic advantage 
[45, 46]

. 

3.3. Five goals in walking 

Actually, there are five primary goals in understanding walking biomechanics 
[47]

. The first goal is the move 

the body forward to the desired location with the desired speed. The second goal of walking is to use the minimum 

amount of energy to move in to that desired location. In order to do this, the body must move in a linear path in 

accordance to the forward movement. It was proven that the most energy efficient movement is one in which the body 

moves up and down very little. The third goal of walking is applicable to those people who have painful foot 

conditions. Ensuring the least amount of pain and putting less pressure on foot during walking to limit discomfort are 

covered within this goal. The next goal is for the foot to act as a shock absorber when it touches the ground, dispersing 
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the amount of body force as it lands. The last goal is also for the foot to provide a way to propel the body forward after 

the end of the gait cycle. 

3.4. Gait cycle analysis 

The gait cycle is used to describe the walking biomechanics, see Fig 6. It was stated earlier that the gait cycle 

determines the motion of the heel on the ground from initial displacement to the same heel when it contacts to the 

ground for a second time. In order to clearly understand the human mechanics behind this, the gait cycle is divided into 

two phases: stance phase and swing phase 
[48]

.The stance phase is defined as the interval in which the foot is on the 

ground. This covers up to 60% of one gait cycle. While the swing phase in the other hand is defined as the interval in 

which the foot is not in contact with the ground. This is when one foot is on the ground and one in the air. From the 

evaluation of the gait cycle made by physical therapists, the stance phase was still subdivided into five stages. The five 

stages are the heel strike, early flat foot, late flat foot, heel rise, and toe-off. 

 

Fig.6 Gait cycle
[48]

 

Swing phase was also divided into two stages: the acceleration to midswing and the midswing to deceleration. 

The heel strike phase starts when the heel touches the ground first and lasts until the whole foot is on the ground. Early 

flat foot stage is defined as the moment that the whole foot is on the ground. The phase is said to be in the late flat foot 

when the heel lifts off the ground. The heel rise phase begins when the heel begins to leave the ground after from being 

lift. The toe off stage begins as the toes leave the ground. This stage also represents the start of the swing phase. 

There are two joints that move during walking: ankle and transverse tarsal joint, see Fig 7. In human anatomy, 

the ankle joint is formed between the foot and the leg. This joint is responsible for the foot to move up and down. On 

the other hand, the transverse tarsal joint allows the foot to have some side to side motion 
[49, 50]

. 

 

Fig.7 Joints that move during walking 
[49]
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3.4. Human-body dynamic model 

Estimating the anthropometric measurements of the human body dynamic model is a reasonable way in 

determining parameters of mass, location of center of mass and moments of inertia or radii of gyration 
[51]

. There had 

been previous works related to the computation of these anthropometric parameters that uses geometric modeling, see 

Table 1. But nowadays, recent technologies in the medical field has allowed researchers to measure the parameters 

through gamma mass scanners, tomography and magnetic resonance imaging (MRI). Zatsiorsky et al.
[52]

 determined by 

means of a gamma-ray scanning technique, the relative body segment masses, center of mass positions, and radii of 

gyration for samples of college-aged Caucasian males and females. From his model, the computed height of the human 

body is 1.70 m and the estimated weight is 63 kg. 

Table 1Anthropometric body parameters
[51]

 

Segment Mass 

(kg) 

Longitudinal 

length (m) 

Center 

of Mass 

(m) 

Radii of gyration (m) Moments of inertia(kgm
2
) 

rs rt rl Ixx Iyy Izz 

Skull 4.208 0.2050 0.1847 0.0677 0.0736 0.0652 0.0193 0.0228 0.0179 

Torso 26.819 0.5325 0.3115 0.1901 0.1805 0.0911 0.9692 0.8739 0.2224 

Thorax 18.963 0.3525 0.2212 0.1440 0.1272 0.0956 0.3933 0.3067 0.1734 

Pelvis 7.856 0.1800 0.0886 0.0779 0.0724 0.0799 0.0477 0.0411 0.0502 

Thigh 9.311 0.3616 0.1304 0.1334 0.1316 0.0586 0.1658 0.1613 0.0320 

Shank 3.030 0.4337 0.1915 0.1175 0.1158 0.0403 0.0419 0.0406 0.0049 

Foot 0.813 0.2524 0.0989 0.0755 0.0704 0.0351 0.0046 0.0040 0.0010 

Upper Arm 1.607 0.2649 0.1496 0.0736 0.0689 0.0392 0.0087 0.0076 0.0025 

Forearm 0.869 0.2556 0.1163 0.0667 0.0657 0.0240 0.0039 0.0038 0.0005 

Hand 0.353 0.1780 0.0765 0.0945 0.0808 0.0596 0.0032 0.0023 0.0013 

4. Control System Design 

4.1. Zero moment point (ZMP) 

ZMP is a concept related with dynamics and control of legged locomotion 
[5]

. It specifies the point with respect 

to which dynamic reaction force at the foot contact with the ground does not produce any moment. In short, this is the 

point where total inertia force equals to zero, with the assumption that the contact area is planar and has high friction 

avoiding the feet from sliding. There was a preliminary design in 2004 that demonstrated a control principle for lower 

extremity exoskeleton utilizing ZMP. The research objective focused on the exoskeleton foot design. Using measured 

human ZMP for reference, the robot's ZMP was modified to achieve ground stability by the application of torso control 

and GRF 
[51]

. 

4.2. EMG-based control 

Electromyography (EMG) based control is a type of control that uses the skin surface electrodes to be used as 

input information 
[53]

. EMG is a method use to evaluate and record the electrical activity produced by skeletal muscles 
[54]

. An electromyograph is used to record and visualize the output. When cells are electrically or neurologically 

activated, this device detects the potential generated by the muscles. There have been many applications associated 

with the use of EMG especially in the clinical and biomedical field 
[55-57]

. For some powered-exoskeleton designs just 
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like in HAL-5
[23]

, EMG signals act as a control signal from the user's muscle to provide feedback and to initiate leg 

movement. 

A study before in exoskeleton motion assist showcased the use of EMG in order to generate flexible and 

smooth motions 
[57, 58]

. In 2009, the University of Michigan Human Neuromechanics Laboratory built a pneumatically-

powered lower limb exoskeleton that uses a proportional myoelectric control 
[59]

. In this type of control, the wearer's 

strength is effectively increase while reducing their metabolic cost when walking. 

4.3. Active-impedance control 

In 2007, another control system in Figure 8, which produces a virtual modification of the mechanical 

impedance of the human limbs, was proposed. They named the system as active-impedance control. This control 

emphasizes more on the exoskeleton dynamics 
[60]

. The goal of the research is to improve the dynamic response of the 

human legs as opposed to the EMG-based control. The difference between the two is that EMG-based requires much 

computation and calibration in order to model the musculoskeletal system. Whereas active-impedance control is less 

dependent on these parameters, making it more effective in dealing inaccurate estimations. 

 

Fig.8 Active-impedance control 
[60] 

4.4. Neural network (NN) control 

Previous exoskeleton designs depend much on the use of complex sensors in order to provide feedback 

between the wearer and robot. Because of the extra weight gained from the sensors, this lead to user discomfort. Neural 

network (NN) control was introduced to trace the wearer's movement without the use of sensors 
[61]

. Reason behind this 

is that sensitivity amplification control model relies on the dynamic model and not on the exoskeleton's physical model. 

Another type of NN control is the wavelet NN 
[62]

. This adaptive control is used to approximate nonlinear 

functions as well as complex control mapping. The advantage of this from a normal controller is that the tracking 

precision is high because of its good advantage in terms of time-frequency localization properties. For adaptive NN 

control 
[63]

, NN and impedance control were both employed. Impedance control was used for the suit control while NN 

with adaptive learning algorithm was used to compensate the model uncertainty. This will result to a decrease in the 

power consumption, assisting the wearer to carry out more loads.  

4.5. Virtual model control (VMC) 

As shown in Figure 9, VMC 
[64]

 is a type of motion control framework that uses virtual components in creating 

virtual forces generated when the virtual components interact with a robot system. Most application of this control is 
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used in bipedal locomotion. With this control algorithm, the biped can walk blindly up and down slopes without 

sensors. 

 

Fig.9 VMC single-leg implementation 
[65] 

For Pratt 
[65]

, VMC is a motion control language which uses simulations of virtual components in creating 

forces, which are applied through joint torques, see Fig 9. VNC design requires the same skills as designing the 

physical mechanism itself. It can be cascaded with low level VMC to modulate the parameters of the virtual 

mechanisms. 

4.6. Haptics 

Haptics is a tactile feedback technology that takes advantage of a user's sense of touch by applying forces, 

vibrations, and motions. One example of this technology is the haptic exoskeleton based control station or exostation. It 

is a device that allows the user to wear an exoskeleton-haptic based interface to tele-operate a virtual slave robot
[66]

. 

5. Future Design Works and Challenges 

Previous studies related to the development of exoskeleton were seen some problems on the hardware design 

and construction. These include power supply, controls, actuation system, transmissions, and human safety. Reason 

why designing a very-efficient low-mass exoskeleton is a tough challenge that requires extensive study 
[67]

. Ideally, 

cooperation between the user and the robot is designed in such a way that the human is the one controlling the robot 

and not the other way around 
[68]

. In the design, the user should be the one who pilot and control the movements. 

Problem in actuator design heavily relies in safety-critical conditions 
[69]

. In meeting safety requirements, 

several problems will be encountered especially in the concept of safety analysis, engineering design 
[70]

 and lifecycle 

application guidelines. The more actuations you have, more safety conditions you need to consider. Another problem 

with fully-actuated systems is that they are inefficient and heavy in terms of weight. Designing under-actuated systems 

that are lighter and only requires small amount of energy will resolve the issue. And lastly, treating the two lower-limb 

exoskeletons as a single manipulator can be the key towards its holistic coordination and control 
[71-73]

. 
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